

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

The Swap Puzzle

Age group: 7 – adult
Abilities assumed: Nothing

Time: 50-60 minutes,
Size of group: 8 to 30

Focus
What is an algorithm?
Testing
Efficiency of algorithms
Computational Thinking: algorithmic thinking

Syllabus Links
This activity can be used both as a general introduction to what an algorithm is
and their efficiency from KS2 upwards, writing and testing programs is as
well as introducing computational thinking.

Summary
You set a simple swap puzzle to be solved. The aim is not only to solve the
puzzle though, but to come up with a set of instructions that anyone could
follow to solve it in future. Those instructions should have the shortest
possible number of steps so that the algorithm is as fast as possible. The class
then try out their solutions, aiming to beat the clock, but with students as the
pieces on a giant ‘board’. They have to finish the puzzle correctly by
following the instructions before their time runs out. The activity introduces
the idea of the solution to a problem being a set of instructions that allow
others to ‘solve’ it with no understanding. It also shows how different
algorithms can solve the same problem but some may be better than others.

Technical Terms
Algorithm, computational thinking, algorithmic thinking, efficiency, testing.

Materials
For each team:

Game board sheets
Game pieces (cut out card or use bottle tops, buttons or similar)
Instruction sheets and algorithm recording sheets

Sheets to label squares on the giant board
Ideally print a set for each level on to red, white or blue paper as
appropriate for the board of the level being played.

7 chairs
 3 red team bibs and 3 blue team bibs

Countdown timer

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

What to do

The Grab:
Explain that the class are going to be solving a puzzle in a race against time, where
they will be the pieces. To beat the clock, they will have to think like computer
scientists.

The Set-up:
Split the class into pairs. Give each a set of puzzle boards, pieces, rules of the game
and algorithm recording sheets. Have the chairs, labels, etc available to make the
giant boards.

The activity:
Explain the aim of the game as well as the rules as below. Demonstrate the starting
position, possible moves and winning position on the level 1 (3 square) board.
The aim of the game is to swap the position of the blue pieces with those of the red
pieces so that all the red pieces end up on red squares and all the blue pieces end up
on blue squares. You must do it in as few moves as possible.

There are two kinds of move:
1) Move a piece to an adjacent empty square (forwards or backwards).

2) Jump a single adjacent piece of any colour into an empty space (forwards or
backwards).

Start the game with the red pieces at the blue end and the blue pieces at the red end,
one piece per square. The square in the middle should be the only square left empty at
the start.
The game can be played on different sized boards with different number of pieces, the
bigger the board the harder the puzzle:

Level 1 Easy: 1 piece per colour, 3 squared board

Level 2 Medium 2 pieces per colour, 5 squared board

Level 3 Hard 3 pieces per colour, 7 squared board

Have everyone try and solve the level 1 puzzle to make sure they understand the
rules. Work through the solution with them. They can then move on to the harder
puzzles.

Explain that they not only have to solve the puzzles, but they must record the solution
in a precise way so that anyone else could then solve it just by following their
instructions. They will be writing down an ‘algorithm’ for solving the puzzle. They do
this on the special algorithm recording sheet. They must write down the series of
moves in the order they must be made using instructions of the form:

Square ???? GETS THE PIECE FROM Square ????

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

They must first fill in the square the piece is to be moved TO and then the square it is
to be moved FROM. For example, to move the piece from square 0 to square 1, you
would write:

Square 1 GETS THE PIECE FROM Square 0

Emphasise that the first number is the place the piece is moved to. (We do it this way
round to mirror the typical way assignment is done in programming languages).

Have the class work out and write down the algorithm for the level 1 puzzle.
Now explain that the ultimate aim is for each team to run the puzzle for real faster
than the target time for that level. The target times (where we have given 5s per move
assuming the optimum solution) are as follows. Adjust these times depending on the
age of the class to make it a doable target but only provided the algorithm is good. A
variation is to allow each team 3 attempts but reduce the target time for each.

Level 1 target time: 15 seconds
Level 2 target time: 40 seconds

Level 3 target time: 75 seconds
Set out three chairs in a line. Tape the labels naming the chairs on the floor below
them as e.g., Square 0 (ideally using the colour as on the board. Choose two
trustworthy class members and give one a blue bib and the other a red bib. Sit the blue
person on square 0. Sit the red person on Square 2.
Now pick one team to try their algorithm. One person reads the instructions, a step at
a time. Only when the move is completed can they move on. The other taps the
appropriate person on the shoulder and points them to the seat to move to. They
move. The reader then reads the next instruction. You use a countdown timer set to 15
s to time them. The team have to finish before the timer runs out.

In their pairs, the class should now try to solve the medium puzzle, writing down their
moves, and so the algorithm as they go. They may wish to adopt a short hand like an
arrow for the instructions (in doing so they are inventing their own programming
language!).

Point out the importance of testing. Once solved they should check the algorithm by
running through it to be sure it does work and they didn’t make a mistake writing
down any instruction. They do not want to run the algorithm in front of everyone and
find it doesn’t work.

Once they are sure it works, they should also think about whether there is a faster
algorithm. In fact, for each level the most efficient solution never requires a piece to
move backwards, so if a team’s algorithm does that, then they can do better.
When a team is ready they can try the timing challenge. They should announce how
many steps long their algorithm is. Set out more chairs to make the bigger board. Stop
everyone to watch and get trustworthy students again to be the pieces.

Teams can move on to the level 3 puzzle, once they have solved the level 2 puzzle.

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

The explanation:
One of the core topics of Computer Science is the study of 'Algorithms'. What do we
mean by an algorithm though? It is just a series of actions to perform and the order to
do them to get a job done. The study of algorithms is about coming up with such
sequences that guarantee particular jobs are done. Once you have solved a problem,
you don’t want to have to solve it again. If you write down the algorithm of the
solution then you won’t have to. Once you have an algorithm, you, anyone else or
even a computer, can just blindly follow its instructions to solve the problem. That is
what we have done with the puzzle. Computational thinking is about only accepting
you have solved a problem when you have an algorithm to do it!

It’s also about devising efficient ways of doing things. Efficiency is a big issue in
computer science. The challenge is not just about coming up with an algorithm that
works. The challenge is to come up with an algorithm that is ‘efficient’. Being
efficient can mean lots of different things. A factory could be hailed as ‘efficient’ if it
uses as few resources (people, raw material, money) as possible - producing the goods
with the bare minimum. Alternatively, it could be ‘efficient’ meaning producing the
goods as fast as possible. That might or might not use more resources to achieve.
Algorithms can be efficient in different ways too. They can store as little data as
possible or need vast resources. They can be fast or slow. There can be many different
algorithms to do the same thing. Which you choose depends on what properties of the
algorithm is most important to you at the time. Two different ways of doing
something could both guarantee to get the job done but one may be quicker than the
other and so better because for that job speed matters.
How fast an algorithm is depends on how quickly it is executed though. Rather than
worrying about times, which in any case depend on the speed of the processor or even
the particular way it is coded in a programming language, we compare algorithms by
counting the major operations involved. An algorithm with more steps will generally
be slower than one with fewer steps, however they are implemented.

It is very easy, if you are persistent, to get the puzzle out. Anyone can use trial and
error to come up with a series of steps, an algorithm, which eventually does swap the
pieces over. However, especially with the longer version of the puzzle, it is much
harder to come up with a really efficient version. That takes some solid algorithmic
thinking. It is important to look ahead before committing to a move – will it lead to
you getting stuck and having to back track further down. It is also easy to overlook
possible moves at each step. It’s important that you don’t. Attention to detail is an
important part of algorithmic thinking and of computational thinking more generally.

The exercise shows the importance of testing. It is easy to make a mistake in writing
down the algorithm you found that solves the puzzle. That is why it is vital that an
algorithm is tested before being used for real. Testing is another important part of
algorithmic thinking. You mustn’t just assume it works. You must always check.

When we do try the algorithm out we are running the algorithm just like programs are
run. The only difference is we ran it on a processor made of people rather than of
silicon.

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

Solutions:
The following are efficient solutions for each level.

The level 1 puzzle can be solved in 3 moves as follows:

Step 1: Square 1 GETS THE PIECE FROM Square 0
Step 2: Square 0 GETS THE PIECE FROM Square 2

Step 3: Square 2 GETS THE PIECE FROM Square 1

The level 2 puzzle can be solved in 8 moves as follows:

Step 1: Square 2 GETS THE PIECE FROM Square 1

Step 2: Square 1 GETS THE PIECE FROM Square 3
Step 3: Square 3 GETS THE PIECE FROM Square 4

Step 4: Square 4 GETS THE PIECE FROM Square 2
Step 5: Square 2 GETS THE PIECE FROM Square 0

Step 6: Square 0 GETS THE PIECE FROM Square 1
Step 7: Square 1 GETS THE PIECE FROM Square 3

Step 8: Square 3 GETS THE PIECE FROM Square 2

The level 3 puzzle can be solved in 15 moves as follows:

Step 1: Square 3 GETS THE PIECE FROM Square 2

Step 2: Square 2 GETS THE PIECE FROM Square 4
Step 3: Square 4 GETS THE PIECE FROM Square 5

Step 4: Square 5 GETS THE PIECE FROM Square 3
Step 5: Square 3 GETS THE PIECE FROM Square 1

Step 6: Square 1 GETS THE PIECE FROM Square 0
Step 7: Square 0 GETS THE PIECE FROM Square 2

Step 8: Square 2 GETS THE PIECE FROM Square 4
Step 9: Square 4 GETS THE PIECE FROM Square 6

Step 10: Square 6 GETS THE PIECE FROM Square 5
Step 11: Square 5 GETS THE PIECE FROM Square 3

Step 12: Square 3 GETS THE PIECE FROM Square 1
Step 13: Square 1 GETS THE PIECE FROM Square 2

Step 14: Square 2 GETS THE PIECE FROM Square 4
Step 15: Square 4 GETS THE PIECE FROM Square 3

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

Variations and Extensions
Online version of the puzzle

Instead of doing a paper and pencil exercise, students do the online version of the
puzzle (http://www.cs4fn.org/algorithms/swappuzzle/). It records a version of the
algorithm for you as you play. This could be done with or without the follow-up role
play part.

Short version
For a shorter lesson don’t act out the algorithms just have teams check them on the
paper board.
Assignment

Rather than have students fill out the algorithm recording sheet using the English
version of the command have them write the algorithm using a more typical
programming notation such as:
Set Square1 to Square0

or
Square1 := Square0;

or
Square1 = Square0;

Programming the puzzle in Scratch
Have the class program their own version of the puzzle in Scratch, using characters of
their choice as pieces. In the simple version they have to just give instructions to
move the pieces in the right order. A more complicated exercise is to create a Scratch
game version of the puzzle, similar to the online program above, that allows a player
to try to solve the puzzle themselves.

Programming a general solution (advanced)
Have more advanced members of the class write a program that can solve the swap
puzzle for itself, whatever size board it is presented with.

Further Reading

The FUNdamentals of Algorithms

http://www.cs4fn.org/fundamentals/algorithms.php.

Computer Science activities with a sense of fun: Swap Puzzle V1.0 (17 February 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

Links to other activities

The intelligent piece of paper
Take part in a test of intelligence against an intelligent piece of paper!
This is a good introduction to what an algorithms is and how a computer
program is just an algorithm. It can also be used to start a discussion on what it
would mean for a computer to be intelligent. It can lead on to an unplugged
programming activity creating winning instructions.

The Invisible Palming Trick
Teach a trick where the magician invisibly moves a card between 2 piles.
This is a fun way to introduce the idea of an algorithm, showing how
algorithms are a series of steps that if followed precisely lead to something (in
this case magical) being guaranteed to happen – even if the person (or
computer) following the algorithm doesn’t know what they are doing.

Live demonstration of this activity

Teaching London Computing give live sessions for teachers demonstrating this and
our other activities. See http://teachinglondoncomputing.org/ for details. Videos of
some activities are also available or in preparation.

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

The Swap Puzzle:
Rules

Aim
The aim of the game is to swap the position of the blue pieces
with those of the red pieces so that all the red pieces end up on
red squares and all the blue pieces end up on blue squares.

You must do it in as few moves as possible.

Moves
There are two kinds of move:

1) Move a piece to an adjacent empty square (forwards or
backwards).

2) Jump a single adjacent piece of any colour into an empty
space (forwards or backwards).

Starting position
Start the game with the red pieces at the blue end and the blue
pieces at the red end, one piece per square. The square in the
middle should be the only square left empty at the start.

Board
The game can be played on different sized boards with different
number of pieces. The bigger the board the harder the pieces:

Level 1 Easy: 1 piece per colour, 3 squared board
Level 2 Medium 2 pieces per colour, 5 squared board
Level 3 Hard 3 pieces per colour, 7 squared board

Start with the easy board and work up through the levels as you
solve each.

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Algorithm Recording Sheet

STEP TO COMMAND FROM
1 GETS THE PIECE FROM
2 GETS THE PIECE FROM
3 GETS THE PIECE FROM

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

STEP TO COMMAND FROM

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Example of how to fill in the algorithm recording sheet

STEP TO COMMAND FROM
Step 1: Square 1 GETS THE PIECE FROM Square 0

Step 2: Square 0 GETS THE PIECE FROM Square 2

Step 3: Square 2 GETS THE PIECE FROM Square 1

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Swap Puzzle Pieces

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Board for Swap Puzzle
Level 1 (Easy)

Square 0

Square 1

Square 2

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Board for Swap Puzzle
Level 2 (Medium)

Square 0

Square 1

Square 2

Square 3

Square 4

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Board for Swap Puzzle
Level 3 (Hard)

Square 0

Square 1

Square 2

Square 3

Square 4

Square 5

Square 6

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

0

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

1

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

2

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

3

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

4

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

5

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

6

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

7

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

8

Teaching London Computing / cs4fn: Swap Puzzle
www.teachinglondoncomputing.org

www.cs4fn.org

Square

9

